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DYNAMICS OF A ONE-DIMENSIONAL PLASMA SHEATH* 

By Frank Hohl and Leo D. Staton 
Langley Research Center 

SUMMARY 

Analytical and numerical methods are used to  investigate a bounded one- 
dimensional plasma with a fixed neutralizing ion background. A variational method is 
used t o  show that a large class of stationary solutions of the nonlinear Vlasov equations 
represent minimum-energy states. The consequence of the minimum-energy property 
is that the stationary states, which represent minimum-energy configurations, can never 
be completely reached. However, numerical experiments which simulate the system 
reveal the interesting property that the plasma approaches its stationary state closely 
whenever the initial energy is not too different from the energy of this stationary state. 

INTRODUCTION 

A one-dimensional model is used to investigate the approach to  an equilibrium 
state (that is, to  a state described by a stationary solution of the Vlasov equation) of a 
bounded plasma with a fixed neutralizing ion background. The stationary states of the 
system are investigated analytically, and numerical experiments with a charge-sheet 
model are performed to study the time development of the system. The present problem 
is different from most previously investigated problems in that the system is strongly 
inhomogeneous. The fixed neutralizing ion background is constant over a given region 
and is zero outside this region. The electrons will then form a sheath at each side of the 
plasma slab. 

The usefulness of the one-dimensional sheet model has  been well established in 
plasma physics. 
Buneman finds that collective interactions or collisions of charge in bulk can restore  a 

Some pioneering work in this field was done by Buneman (refs. 1 and 2). 

?he information contained in the text is par t  of a thesis by Frank Hohl entitled 
"Collective Effects in Stellar Dynamics and Plasma Physics" offered in partial fulfill- 
ment of the requirements for  the degree of Doctor of Philosophy in Physics, College of 
William and Mary, Williamsburg, Virginia, June 1967. The appendix was written by 
Leo D. Staton. 



grossly non-Maxwellian velocity distribution within a few plasma periods to  a near- 
Maxwellian distribution by means of the buildup of electrodynamic instabilities. In 
similar work, the one-dimensional sheet model h a s  been applied to  specific problems 
by Dunn and Ho (ref. 3), Birdsall and Bridges (refs. 4 and 5), Smith and Dawson (ref. 6), 
Burger, Dunn, and Halsted (ref. 7), Derfler (ref. 8), and Hasegawa and Birdsall (ref. 9). 
The same model was used by Burger (refs. 10 and 11) to analyze the stability of direct- 
current solutions for the plane diode. A discrete one-dimensional computer model fo r  a 
collisionless plasma in a magnetic field was used by Auer, Hurwitz, and Kilb (refs. 12 
and 13) to examine the structure of magnetic compression waves. This work was later 
extended by Rossow (ref. 14). 

Dawson (refs. 15 and 16), and Eldridge and Feix (refs. 17 and 18) initiated a study 
of the one-dimensional sheet model to check the theoretical predictions of plasma 
behavior. Dawson (ref. 15) investigated the thermal equilibrium properties of plasmas, 
such as: the drag on a tes t  particle, Debye shielding, diffusion in velocity space, Landau 
damping of Fourier modes, and other parameters. In a subsequent paper (ref. IS), 
Dawson used numerical methods to investigate the thermal relaxation of a one-species 
one-dimensional plasma and found that there is no relaxation to a Maxwellian to first 
order (that is, a number of plasma periods equal to  the number of particles per Debye 
length), as was shown analytically by Eldridge and Feix (ref. 19). Eldridge and Feix 
(refs. 17 and 18) performed numerical experiments to  study the properties of the one- 
dimensional plasma near equilibrium and related some of the one -dimensional plasma 
properties to the three-dimensional case. The agreement with the theoretical prediction 
of the results obtained from the numerical experiments gives considerable confidence in 
the simulation of Vlasov systems by only a few thousand particles. 

SYMBOLS 

a acceleration 

anm matrix elements defined by equation (79) 

A N constant, - 
4x0~0 

B constant defined by equation (64) 

e magnitude of electronic charge or  charge per unit area 

E electric field 
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f electron distribution functions 

F energy distribution function 

g 

g*= g + 2xBkdk) 

gT kinetic-energy density, B k d k )  

h 

energy density defined by equations (72) and (76) 

3 

function defined by equation (85) 

H Heaviside unit step function 

m electron m a s s  or  mass  per unit area 

n density 

N total number of electron charge sheets 

P potential energy 

s = l - z  

t time 

T kinetic energy 

1 
2 

U total energy of a charge sheet, -mv2 - ecp 

V velocity 

VT thermal velocity 

v, v, contours defining regions of constant f 

W variable defined by equation (A4b) 

W total system energy, T + Pe + Pi 
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w * ’  defined by equation (A5) 

X position coordinate 

X,X1,X2 positions defined by V(x) = 0 

z 

a! 

P 

r 

6 

E 

c 

rl 

8 

K 

x 

AD 

P 

(T 

7 

4 

Ne2 dimensionless variable, - 
8 ~ f ~  

constant defined by equation (25) 

constant of integration, 

defined by equation (A4c) 

U Dirac delta function o r  dimensionless energy, - 
E 

maximum energy of an electron defined by equation (38) 

permittivity of free space 

dimensionless position coordinate defined by equations (22) and (49) 

dummy integration variable 

variable defined by equation (70) 

thermal energy 

Lagrangian multiplier 

Debye length, v T F  
nee 

charge density 

charge per unit area 

period defined by equation (45) 

- . . ... . . .. .. -. . -. -. . - ... . . 



50 electric potential 

9 dimensionless potential defined by equations (21) and (50) 

n 

neeL 
plasma frequency, - 

"E f 

Subscripts : 

e electron. 

eq equilibrium 

i ion 

j7k7n summation indices 

min minimum 

0 initial 

S system boundary 

Superscripts: 

k summation index defining waterbag contours o r  ordering index 

m,n summation indices 

A prime on a symbol indicates partial differentiation with respect to  x. 

STATIONARY EQUATIONS FOR A BOUNDED PLASMA 

The characteristic t ime for collective effects in a plasma is given by 

where e is the charge and m is the m a s s  of an electron. The characteristic length 
is the Debye length given by 
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The Vlasov equation for the one-dimensional system with a fixed ion background 
takes the form 

af af eE af - + v  - ---=  0 
a t  ax m av 

where E = -Q and f is the electron distribution function. The electric potential cp 

is given by the Poisson equation 
ax 

2 a= - z ( n i  - s f  dv) 
ax E f  

(3) 

where ni is the fixed ion density. The integrations a r e  performed over all values of 
the variables throughout the remainder of the paper, unless otherwise specified. 
steady state, - =  0 and equation (2) takes the form 

In the 
af 
a t  

Vir ia l  Theorem 

In order  to obtain a relation between the kinetic and potential energy of the system 
in equilibrium the identity 

1 s v2 f(x,v)dx dv + m ss xa f(x,v)dx dv (5) 2 3 Dt2 1 1 x2 f(x,v)dx dv = m 

is investigated where 

.I ~a - - - + v  -+ a a -  a m a t  ax av 

m 
Dt 

and -= 0 according to equation (2). Because the system is in equilibrium, the left- 

hand side of equation (5) is zero. The first t e rm on the right-hand side of equation (5) 
is 2T where T is the expectation value of the kinetic energy of the electron system. 
The last t e rm of equation (5) is now investigated. By using Newton's law, 
replaced by $2. Also, the electron density is given by 

a can be 

ne = f dv 
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By using the Poisson equation 
n 

the electron density can be written as 

The last integral of equation (5) can then be written in the form 

An integration by pa r t s  .gives the result 

or F 1 

where Pe 

symmetric in x. The te rm f 

to  normalize the potential energy if the system contains a net charge o r  if an externally 
applied field is present. The last integral in equation (10) must now be considered. An 
integration by par ts  gives the result 

is the potential energy of the electron system and the system is assumed to  be 

in the potential-energy definition is required EZx (dx )2 

where X i  defines the boundary of the fixed neutralizing ion background; that is, 
ni = no for -xi < x < X i  and ni = 0 otherwise. The energy Pi is related t o  the 
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potential energy of the ion background. In general, the potential energy of a one- 
dimensional system of charges ai is given by 

Because p = 0 can always be chosen at x = Xi, equation (13) can be put in the same 
form as equation (14). In the remainder of the paper <p is always taken to be ze ro  at 

X S  

x = 0. Only systems with zero net charge a r e  treated so that x (L)21-xs 2? = 0, and equa- 

tion (6) takes the form 

In the limit as X i  - 0, the system consists of two electron sheaths which a r e  held 
together by a thin but dense positive charge. The ions then simply take the place of a 
positively charged grid through which the electrons can pass  freely and Pi = 0. Equa- 
tion (15a) then takes the usual form 

The total energy of the system is always given by T + P e  and is a constant of the 
motion. 

If the ions are not assumed to be fixed and the ion density is givenby an equation 
similar to equation (7), then 

where P = Pe as given by equation (12). 

Equilibrium Solutions 

By using the method of characteristics to solve equation (4), any distribution func- 
tion F, which is a function only of U, is found to be a solution of equation (4) where 

is the energy of a charge sheet. If an equilibrium state can be reached by starting from 
EL given initial distribution fo, then 
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fo(x,V,t  -c m) - F(U) (18) 

The form of 
by following the t ime development of the nonlinear Vlasov equation. However, if an 
initial distribution which is constant over a certain region of phase space and is zero  
outside this region is taken, then F(U) can be obtained without following the evolution 
of the distribution function. This  F(U) is unique. The distribution is shown in figure 1. 
According to  the Vlasov equation, f remains constant along the different trajectories 
so  that the region in phase space can only change its shape with t ime while its a r e a  
remains constant. For  this reason, this distribution function has  been called the water- 
bag model by DePackh (ref. 20). This model is of interest primarily because there  
corresponds to it only one possible equilibrium state which is easily calculated and can 
be used for comparison with the numerical results. 

F(U) depends on the initial distribution and must, in  general, be  obtained 

For the waterbag model, F(U) = A = Constant for 0 5 U 5 E ,  and F(U) = 0 
for U > E .  

The equilibrium solution for the waterbag model is now obtained. The initial 
shape of the waterbag is taken to be a rectangle defined by the a r e a  in phase space 
between fxo and fv0. The function F(U) is used in the Poisson equation (3) and 
the integration over dv is changed to an integration over dU. Because the density at 
a given x is of interest, dv is given by 

The Poisson equation can be written as 

where 

and 

ni = no 

ni = 0 

9 
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If 9 and c are introduced such that 

@=-9 
E 

and 

then equation (20) takes the form 

and 

where 

A first integration of equations (23) and (24) yields 

and 

respectively. The constants of integration in equations (26) and (27) have been evaluated 
d+ 

d <  d <  
by using the boundary conditions e= 0 and 9 = 0 at < = 0, and -= 0 and 9 = 1 

at < = C s  where <, defines the boundary of the system. The first two boundary con- 
ditions a r e  obtained by applying symmetry in < and the last two a r e  obtained by using 

overall charge neutrality. Because - and + a r e  continuous at the boundary of the 

neutralizing ion background <i 

d+ 
d5 

2a! +pi) = +i = 3 
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and a second integration gives the final result 

where Si 
The numerical solution of equations (29) and (30) is shown in figure 2 which gives @ as 
a function of ln < fo r  several values of a Equations (21) and (22) can be used to 
obtain cp as a function of x .  The relation 

is given by equation (29) with the upper limit of the integral equal to Gi. 

N 
2xi 

no = - 

where N is the total number of electrons o r  ions in the system and equation (25) is 
used to eliminate no and E from equation (22). Then 

and the numerical values f o r  no and E a r e  easily obtained. The constant of propor- 
tionality in equation (22) is found from the ratio 

where equation (32) is used. Figure 3 shows the variation of the electron density for  
three values of a for  a system with N = 1000, A = 0.25, and E f  = m = e = 1. The 
variation of the electric field is shown in figure 4 for corresponding values. The 
equilibrium contour in phase space V,(x) of the waterbag is given by the equation 

2 
(E + eq), V+(x) = -V-(x) = J (34) 

and figure 5 shows the equilibrium contours for three values of a. The parameters  
used in the calculation are the same as those used in figure 4. Equations (29) and (30) 
cannot be used if the positive ion background reduces to a thin but dense charge and 
xi -c 0. Such a system corresponds to a positively charged permeable grid through which 

11 



the electrons can pass  freely; that is, there  a r e  two electron sheaths that are held 
together by a dense, thin positive charge. The Poisson equation (3) can be written as 

A first integration gives the result  

( E  + ecp)3/4 + Constant 

The boundary conditions a r e  that * = 0 and cp = - for x = xs and that dx e 

lim * = -E and lim cp = 0. By using these boundary conditions, the constant 
x-o+ dx 29- x -o+ 
of integration is found to  be zero and 

where 

so that the maximum energy of an electron is 

An integration of equation (37) gives the final result 
- - 

Ne2 
(39) 

d Figure 6 shows the variation of E = - 2 given by equation (37) as a function of x. 
dx 

The variation of the period of oscillation of a charge sheet as a function of energy 
seems to give a measure of the effectiveness of phase (or orbit) mixing for the system. 
For example, in the problem of a self-gravitating system (ref. 21), the variation of the 
period with particle energy is very small and the oscillations in the kinetic energy of the 
system persist  for a long time. As is shown subsequently, the variation of the electron 
period with energy is large for the present problem and the oscillations of the kinetic 
energy with t ime quickly damp. Only the period for the case where xi = 0 will be 
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calculated. The equation of motion for  a charge sheet is 

By using the normalization given by equation (21); equation (39) (for positive x) can be 
written as 

(4 1) 4 9 = 1 - (1 - z) 

where z = xp&). Therefore, 

3 e= 4(1 - z) 
dz 

and equation (40) takes the form 

d2z + N2e4 (1 - z)3 = 0 
dt2 16mef2e 

A first integration of equation (43) gives the result 

(g) = --El N2e4 - z)4 - (1 - 6)l 
32meq2e 

(43) 

(44) 

U where 6 = - and U is the total energy of the sheet under consideration. A second 
integration of equation (43) gives the period of oscillation as 

E 

16efr ~ ~ 1 - ( 1 - 6 )  1/4 - 1/2 
,i-=- 2me [(1 - z ) ~  - (1 - 6 ) l  dz 

Ne2 

- 1/2 
-- - 16EfG11 E" - (1 - 6 ) l  d s  

Ne2 (1-6) ll4 
(4 5) 

where s = 1 - z and the l imits of integration are found from equation (44) by setting 

dt 
The t ime T~ has been arbitrari ly chosen. Because of the strongly nonlinear restoring 
force eE(x), the variation of the period from zero to  infinity is not surprising. For the 
case  where xi is not zero, the period approaches infinity as U approaches E .  

-- dx - 0. The variation of the electron period as a function of energy is shown in figure 7. 
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The stationary state for a system which is described by a distribution function 

is easily obtained by the same method as that used for the waterbag model. The solution 
is given by 

and 

where p =  gF. Also, 
no 2Km 

and 

were used. All  but one of the constants of integration can be directly evaluated by using 
dQ, dQ, the boundary conditions -= 0 and Q, = 0 at 5 = 0, lim -= 0, and continuity of 
d <  5-00 d5 

- " at < = <. The equation for d5 1' 5 > ci is then integrated by assuming that the 

5-m d <  
constant is nonzero. In order to satisfy 

zero, and equation (48) is obtained. 

lim %?= 0, the integration constant must be 

For the case X i  = 0, the solution is 

or 

The constants of integration have been evaluated by using the boundary condition 
d + -  Ne2, is 2 

lim g= 0, lim + 9 = Ne, and @ = 0 at x = 0. The condition lim - - - 
x-cm dx x-0 dx 2€f x-0 dx 2€f 

14 



obtained by applying Gauss’ theorem to the positive charge sheets at the origin. 
electron density corresponding to equation (51) is 

The 

Figure 8 shows @(x) and 
N = 4. The electric field is 
tive of the exact form of the 
be expected. 

E(x) for the case where xi = 0, c f  = 1, K = 1, e = 1, and 
very similar to that for the waterbag case. Thus: i r respec-  
distribution function, s imilar  evolution of the system might 

- 

MINIMUM-ENERGY PRINCIPLE 

The stationary solution for the initial waterbag distribution was  obtained by con- 
serving only area in phase space. The stationary (or equilibrium) state is described by 
a function which depends only on the energy U. 
corresponding to a given initial energy and particle number can be obtained. 
such an F(U) can be reached, energy considerations must allow the relaxation from a 
function f(x,v,t = 0) of two independent variables to a function F(U) of the energy 
only. If an equilibrium state is to be reached, the initial and final energy of the system 
must be equal. For  the initial rectangular waterbag, the kinetic energy T is given by 

For the waterbag model, a unique F(U) 
Before 

T(t = 0) = 11 mv2f(x,v,t = 0)dx dv 

- Nm 2 - -  
6 vo (54) 

As previously stated, fv0 and so define the rectangular a r e a  of the initial distribu- 
tion. For positive x, the electric field is given by 

Ne 1 E(x) = - -- - - 
2e,(., 

and 

E(x) = (1 - e) 
26f 
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and, therefore, the initial potential energy is 

Pe(t = 0) = E f  s,x” E2(x)dx 

- - -(Xo e2N2 - X i )  2 12EfX0 (57) 

Again, G~ and *vo define the rectangular a r e a  of the initial distribution. The total 
energy of the initial distribution is given by 

W(t = 0) = T(t = 0) + Pe(t = 0) 

N Ne2 
6 

The minimum value that equation (58) can attain for a given value of A = - is given 
4 x 0 ~ 0  

by 

Wmin(t = 0) = - (59) 

where xi = 0. 

By using equations (37) and (38), the potential energy of the equilibrium state for 
xi = 0 is given by 

The kinetic energy is given by 

Teq = 4 soxs ~ov+(x) Lmv2A dv dx 
2 
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where V+(x) is given by equation (34). After using equation (38) and A = - to 
4 x 0 ~ 0  

eliminate E and A from equations (60) and (61), the expression for the total energy 
of the equilibrium state becomes 

The ratio of equation (59) to the total equilibrium is 

and the initial rectangular distribution with the smallest ,possible energy has  still more 
energy than the equilibrium distribution. The equilibrium waterbag distribution for a 
plasma sheath may have, therefore, a minimum-energy. property. 

The minimum-energy property for the stationary solutions of a plasma sheath 
represented by a single waterbag is given in the appendix. This  property can be shown to 
hold for a large c lass  of distribution functions that can be described by multiple-contour 
waterbag distributions. The waterbag model illustrated in figure 9 is used in the analy- 
sis. 
According to the Vlasov equation, f behaves like an incompressible phase fluid; there-  
fore, the a rea  bounded by any pair of contours is constant. With a large number of con- 
tours, the waterbag model can be used to approximate arbitrary distribution functions. 

The contours V+(k)(x,t) and V-(k)(x,t) describe surfaces of constant f = fk. 

The function 

describes the waterbag distribution where the summation is over all contours and H(z) 
is the Heaviside unit step function. 
satisfies the Vlasov equation 

The distribution function f ,  as given by equation (64), 

\ k L 

. .  a t  ax m - - 
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where 6(z) is the Dirac delta function. The electric field E is obtained from the 
equation 

where there is assumed to  be a total of N electrons each of charge e in the system. 
If equation (65) is integrated separately over positive and negative velocity 

and 

The stationary contours are described by 

which must hold term-by-term. In order to simplify the equations, symmetric contours 

V+(k) = -V-(k) = dk) are assumed in the remainder of the analysis. The resul ts  
obtained are not affected by such an assumption. Equation (68) can then be  simplified as 

A new variable is now defined as 

(k) = e (4 0 

18 
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where urs(k) are the end points of the kth contour. In t e r m s  of dk) the electric 
field is given by the equation 

The energy density of the system can be represented by a function g r x,B (k),V(kg. The 
total energy of the system is then given by 

For the integral for W to  be an extremum subject to the condition that 

k 

is a constant requires that the contours satisfy the Euler-Lagrange equation 

where g* = g + h2Bkdk)  and h is an undetermined Lagrangian multiplier. Because 

the end points ucs(k) are fixed, the constraint on the number of particles is redundant 

and h = 0. If the end points ucs(k) are not held fixed in the variational process, addi- 
tional equations which occur do not change the main results. 

For a multiple waterbag, the kinetic energy per  unit length is given by 

19 



The expression for g then takes the form 

2 
+ x i p ( x  + xi) - H(x - xi,]> (764 

Because the last te rm in equation (76a) does not depend on the function dk) or  

it can be omitted and g is thus given by 

The Euler -Lagrange equations then become 

o r  

which is the equation for the equilibrium contours. 
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If equation (78) is to  represent a minimum-energy configuration, then Legendre's 

dk )  is that the quadratic form the 
criterion of the second variation of g must be satisfied. The Legendre condition 
(ref. 22) f o r  the case of several  unknown functions 
coefficient matrix of which has the elements 

anm = &- 
must not be negative. 
tion (79) are nonzero and are given by 

For the present problem, only the diagonal elements of equa- 

(79) 

Because 2 m d k )  is never negative, the Legendre condition requires that 

The form of f given by equation (64) shows that the condition Bk > 0 is equivalent to 
stating that the distribution function must decrease monotonically in going outward from 
the center of the system where f = fk = f l  must be the largest. If equation (81) is sat- 
isfied, the system is not a maximum-energy configuration but is a minimum-energy 
configuration which is therefore stable. However, if Bk > 0 is not satisfied for all k, 
the system is not a minimum-energy configuration and nothing can be said about its 
stability. 

If the distribution of ions is not fixed but is given by an f s imilar to  equation (64), 
the system is found to be a minimum-energy configuration when both the electron and ion 
distribution functions are monotonically decreaseing in going outward from the center of 
the system. 

For the case of a single-contour waterbag, the Legendre criterion is always satis- 
fied and the stationary solution represents a minimum-energy configuration which is 
inaccessible for  arbi t rary initial distribution. However, the resul ts  of numerical exper - 
iments show that the system approaches the equilibrium state closely whenever the ini- 
tial energy is not too far from the energy of the corresponding stationary state. 
single-contour waterbag is treated in detail in the appendix. 

The 

THE ONE-DIMENSIONAL PLASMA MODEL 

The plasma model consists of a system of N ions and N electrons that are 
represented by 2N charge sheets. The charge sheets move only in the x-direction and 
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are of infinite extent in two t ransverse directions. When two sheets meet, they a r e  
allowed to  pass  freely through each other. The equations of motion of all the 2N sheets 
a r e  solved simultaneously by computing the position of each sheet and by integrating the 
equations of motion of each sheet over a small  t ime interval At. The equation of motion 
of a sheet with charge uj and mass  m per  unit area is given by j 

d2x.(t) u. 

dt2 "j 
l= L E j  

where xj is the position of the sheet. The electric field is given by 

-L- a E x t ) -  --p(x,t) 1 
ax ef  

2N 
= 1 $6 - x i q  

i= 1 
(83) 

The magnetic field induced by the charge sheets is neglected. 
given by 

The electric field is then 

E(x,t) = - 1 x o i h E  - xi(t] 

26f 

where 

h(z) = 1 

h(z) = 0 

In obtaining equation (84), the electric field is assumed to be zero  outside the system. 
For the numerical calculations, the electric field acting on a particular sheet is obtained 
by the net charge to the left of the sheet xj; thus 

- 
j-1 1 

1 E. = - 
€ f  

k= 1 I 
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where the superscript k gives the order of the charge sheet xj (k) such that 

The IBM 7094 electronic data processing system w a s  used to calculate the self- 

For 
consistent motion of systems containing several thousand charge sheets. The position 
and velocity of each sheet a r e  computed at successive t imes tl, t2, t3, . . . tm. 
each t ime step A t  = tn+l - tn, the new positions and velocities of the sheets a r e  com- 
puted from the equations 

and 

where 

and 

dt3 dt2 

The kinetic energy of the system is given by 

and the potential energy is 

2N- 1 
P =  - € f  1 (xjCl - x j ) E j  2 

2 
j= 1 

(9 3) 
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NUMERICAL RESULTS 

All numerical computations fo r  the sharply bounded plasma were performed for  
the case where the ra t io  of the ion mass  to electron mass  is so  large that the ions can be 
assumed fixed and only the motion of the electrons needs to be calculated. The problem 
is that of determining the evolution of the electron distribution function for a fixed ion 
background between -xi and xi. The case where X i  is near zero  is investigated 
first. The case corresponds to that of a permeable grid which is positively charged and 
through which the electrons can pass  freely; that is, there  are two electron sheaths held 
together by a thin but dense positive charge. 
chosen. 
The ratio of the initial energy to the equilibrium energy, as given by equation (71), is 1.3. 
The dashed line shown in figure 10 corresponds to one-third of the total energy of the 
system and is the kinetic energy given by the virial  theorem. The kinetic energy quickly 
approaches this value. The plasma frequency wpo corresponds to the initial electron 
density. One important indicator of the approach to an equilibrium state is the t ime 
development of the energy distribution function. Figure 11 shows that, after about six 
plasma periods 27rwpO-l), the energy distribution function has  approached the equilib- 
rium distribution indicated by the dashed line. After six plasma periods, the system 
changes very little as its evolution is followed for  a longer time. The high-energy tail 
of the distribution does not disappear and is required to conserve the energy of the s y s -  
tem. The corresponding time development of the density is shown in figure 12. The 
time development of the density indicates that the density of the system quickly tends to 
approach its equilibrium value as indicated by the continuous curve. The dimension of 
the sheath at each side of the system is of the order  of a Debye length so that the number 
of particles per Debye length is of the order  of the number of particles in the system. 
Dawson (ref. 16) has shown that thermalization in a uniform one-dimensional plasma 
occurs only on a time scale (nXD)2wp-1. Graininess effects in the present system can 

be expected to become important only after lo6 plasma periods. The results shown in 
figure 12 a r e  for t imes much l e s s  than (nXD)2wp and a r e  therefore not affected by 
graininess. The electric field at t =  OW^,-^ is compared with the equilibrium field 
in figure 13. Because of the high-energy electrons, the electric field of the system does 
not go to zero as quickly as the equilibrium value. The t ime development of the system 
in phase space is shown in figure 14. The system quickly develops a r m s  which wind 
around the main body of the system as it rotates in phase space. Because of the very 
long period of rotation for particles at the outer boundary of the system, the a r m s  
stretch rather quickly. The calculations in figure 14 a r e  repeated for a 2000-electron 
system. The results are almost identical and only the initial t ime development of the 
system in phase space is shown in figure 15. 

For  all calculations, e = E f  = m = 1 is 
Figure 10 shows the variation of kinetic energy for a 1000-electron system. 

( 
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Calculation fo r  values of X i  # 0 are also performed. The dimensions of the 
sheaths which form at each side of the positive ion background are of the order  of a 
Debye length. 
of the plasma, and the number of electrons in the sheath or per Debye length becomes 
quite small. 
the system approaches a Maxwellian distribution. Figure 16 shows the variation of the 
kinetic energy for a 1000-electron system with xi  = 477. Figure 17 shows the t ime 
development of the energy distribution function for a collision-dominated system and 
shows that the system quickly approaches the Maxwellian distribution as indicated by the 
dashed-line curve. The corresponding resul ts  for the t ime development of the system 
in phase space are shown in  figure 18. Figure 18 indicates that at t = 4 5 . 0 0 0 ~ ~ - ~  the 
Vlasov character of the system has been lost and the system cannot be considered colli- 
sionless; therefore, the evolution of the system cannot be approximated by means of the 
Vlasov equation. 

For appreciable values of Xi,  most of the electrons are in the main body 

For  moderate values of Xi,  graininess effects become very important and 

CONCLUDING REMARKS 

The stationary state for the single-waterbag distribution is shown to be a minimum- 
energy configuration for the one-dimensional bounded plasma with a fixed neutralizing 
ion background. 
initially in a nonequilibrium state because the initial distribution has an excess of energy 
which cannot be accommodated by the stationary state. Numerical experiments with a 
one-dimensional charge-sheet model reveal the interesting property that the system 
does i t s  best  within the limitations of energy conservation to approach the steady state. 
Similar results were previously found for a one-dimensional self-gravitating system. 

Thus, the stationary state is not accessible for  any system which is 

The minimum-energy property was extended by approximating arbitrary distribu- 
tion functions by a multiple-waterbag distribution. 
which decrease monotonically in going outward from the center of the system, are found 
to be minimum-energy configurations and are therefore stable. The consequence of the 
minimum-energy property is that for  arbitrary initial distributions, described by a mul- 
tiple waterbag, an equilibrium state (in the Vlasov sense) is in general, inaccessible. 

Stationary distribution functions, 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., January 24, 1968, 
129-02-01-01-23. 
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APPENDIX 

MINIMUM-ENERGY PRINCIPLE FOR A SINGLE WATERBAG 

In order t o  discuss in detail the minimum-energy property of a single-waterbag 
equilibrium distribution, the extremum of integrals of the form 

must be considered subject to  the condition that 

is a constant. The energy density g is a known function of X, V, and 8, where 
X 

V(x)dx, and X1 and X2 a r e  not fixed at the outset but V(x) must vanish at 
9 = s x  1 
the end points. The positive constant A is equal to the height of the waterbag distribu- 
tion function. 

The purpose of this appendix is to  establish the conditions that the smooth function 
V(x), which describes the equilibrium waterbag contour, must satisfy in order that the 
quantity W, which is subsequently identified with the total energy of the system, shall be 
an extremum or, in particular, a minimum. For th i s  purpose, the one parameter family 
of integrals 

and 

are constructed, where 

w = V(X) f €7$X) 
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APPENDIX 

and 

The function V(x) 
the (as yet unknown) actual end points x1 and x2; q(x) is an arbitrary differentiable 
function; E is the parameter;  and ((x) is the indefinite integral of q(x ) .  The trial 
function w(x) approaches V(x) as E approaches zero. The intersections of a 
given w(x) with the x-axis define the points X1 and X2. As w(x) approaches 
V(x), the points X1 and X2 approach the actual end points x1 and x2, respectively. 

(as yet unknown) is the actual extrema1 curve and passes  through 

By the usual arguments of the calculus of variations (ref. 23), the value of W(E) 
in equation (A3) for a given q(x) is an extremum when E is zero. In order to  take the 
constraint equation (A4a) into proper account, the integral 

is constructed, where g*= g + h(2Aw) and h is an as yet undetermined Lagrangian 
multiplier. The condition for an extremum is then 

= O 

With the use of equation (A5) 

a r  = 5 so that by using these relations in equation (A") and by Also, -=  q and - 
letting E = 0 

aw 
a €  a €  



APPENDIX 

The end-point conditions must be examined in detail t o  evaluate and 

Because w(Xl) = w(X2) = 0 by definition, then 

for all E .  Thus, the use of equations (A4b) and (A4c) gives 

awe= aw%= V'(X,),,+ 3x1 q ( x l )  + €V'(X1) = 0 
a €  a €  

For E = 0 

v ' ( x l ) y  + q(X1) = 0 

o r  

By similar reasoning 

Substitution of equations (Al l )  and (A12) into equation (A8) and use of integration by par ts  
in the first integral of equation (A8) gives 

Equation (A13) must hold for a rather wide class of functions q(x) and <(x). In 
particular, equation (A13) must hold for those functions <(x) which are nonzero but are 
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APPENDIX 

compatible with c(x1) = c(x2) = q(x1) = q(x2) = 0. 

- L(&) = 0 
a e  dx av 

For such a case 

(A141 

Again, q can be nonzero at one end point but zero at the other end point when c van- 
ishes  at both end points, and so forth. By this method 

and 

V’ (x2) 

V‘ (9) 

7 aV x=x1 = O  

@I aV x=x2 = O  

Equations (A14) to  (A18) and the original constraint equation (A2) with x1  and x2 
replacing X1 and X2, respectively, are the equations used to determine V(x), XI, 

~ 2 ,  and A .  

The function g(x,V,Q) for specializing to the case of the single waterbag is now 
introduced. The total energy per unit length of the waterbag g(x,V,Q) is given by 

EfE2 - J-v(x) V(x) A(imv2)dv + E E2 1 imv2f  dv + -- 
2 

where 

E = e 1: Po k ( x  + xi) - H(x - xi)] - 2AV(x)} dx 
‘f x 

+ xi) - H(X - xi (A19) 

I 
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Then 

g*(X,v,e) = g + 2Axv = Am -v + - - (.[.(x + x i )  - H(x -xi)] 
3 €f  

+xi [ (  H X + X ~  ) -  H ( X - x i  )l}-$AOy+2AAV 

Use of equation (A20) in equations (A17) and (A18) gives 

where V xl) = V(x2) = 0. For finite V'(xl) and V'(x2), equations (A15) and (A16) 
require that 

( 

Use of equations (A20), (A21), and (A2) shows that the relations in equation (A22) are 
identically satisfied. Equation (A14) now reduces t o  

The use of equations (A19) and (A20) in equation (A23) gives the differential 
equation 

dV eE 
d x m  

v-+-=o 

which must be satisfied by V(x). Equation (A24) and the constraint equation 

N = 2AB(x2) 

are sufficient to  determine xl, x2, and V(x) where V xl)  = V(x2) = 0. ( 
d e  
dx 

By noting that 8 - 8 and V = - - 8' transform equation (A14) into the custo- 

mary Euler-Lagrange equation, the Legendre test (ref. 22) may now be applied to the 
second variation of the integral W*. The Legendre test states that in order for the 
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solution V(x) of equation (A24) to be such that the integral W* is maximized, the 
quantity 

must be negative definite over the interval f rom x1 to  x2. This  quantity is seen to be 
positive definite over the interval so that the extremum represented by V(x) cannot be 
a maximum, but must be either a minimum or a simple inflection. Other evidence pre-  
sented herein indicates that the extremum is a minimum. 
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Figure 1.- Waterbag distr ibution. 
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Figure 2.- Variat ion of the dimensionless potential as a funct ion of In fo r  several values of a. 
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Figure 3.- Variat ion of electron density for several values of a. 
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Figure 4.- Variation of the electric field for several values of a. 
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Figure 5.- Equilibrium waterbag contours for several values of a. 



Figure 6.- Variation of the electric f ield for a positively charged grid. 
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Figure 7.- Variat ion of electron period w i t h  energy. 
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Figure 8.- Variat ion of t he  potential and electr ic f ield near a positively charged gr id  for  a Maxwellian velocity distr ibution. 

4 1  



t "  

X 

Figure 9.- I l l us t ra t ion  of a multiple-contour-waterbag distr ibution. 
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Figure 10.- Variat ion of kinetic energy for a 1000-electron system near equilibrium. 
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Figure 11.- Time development of the energy distr ibution funct ion for a 1000-electron system near equi l ibr ium. 
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F igure 14.- Time development in phase space for a 1000-electron system near equi l ibr ium.  
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Figure 14.- Concluded. 
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Figure 15.- Time development in phase space of a 2000-electron system near equil ibrium. 
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Figure 15.- Concluded. 



Figure 16.- Variation of kinetic energy for a collision-dominated system with X i  = 477. 
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Figure 17.- Time development of the energy distr ibution funct ion for a coll ision-dominated system wi th  X i  = 477. 
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Figure 18.- Time development in phase space for  a 1000-electron collision-dominated system. 
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